Systems of Linear and Quadratic Equations

A.A.11 Solve a system of one linear and one quadratic equation in two variables, where only factoring is required.
A.G.9 Solve systems of linear and quadratic equations graphically.

Check Skills You’ll Need

1. Solve the system using substitution.
 \[x = y + 2 \]
 \[4x + y = 8 \]
 3. Solve \(x^2 - 5x + 6 = 0 \) by factoring.

Go for Help

Lessons 7-1, 7-2, and 10-4

1. Solve the system by graphing.
 \[y = 2x + 3 \]
 \[x = y \]

Solving Systems Using Graphing

In Lesson 7-1, you solved systems of linear equations graphically and algebraically. A system of linear equations can have either one solution, no solutions, or infinitely many solutions. In Chapter 10, you solved quadratic equations graphically and algebraically.

In this lesson, you will study systems of linear and quadratic equations. This type of system can have one solution, two solutions, or no solutions.

\[
\begin{align*}
 y &= x^2 - 4 \\
 y &= -3 \\
 y &= x^2 \\
 y &= 0 \\
 y &= x^2 + 4 \\
 y &= x + 1
\end{align*}
\]

no solutions

one solution
two solutions

EXAMPLE

Solve by Graphing

Solve the following system by graphing.
\[
\begin{align*}
 y &= x^2 + x - 2 \\
 y &= -x + 1
\end{align*}
\]

Graph both equations on the same coordinate plane. Identify the point(s) of intersection, if any.

The points \((-3, 4)\) and \((1, 0)\) are the solutions of the system.

Quick Check

Solve the system by graphing.
\[
\begin{align*}
 y &= 2x + 2 \\
 y &= -x^2 - x + 2
\end{align*}
\]
Graphing to Count Solutions

Find the number of solutions for the system.

\[\begin{align*}
 y &= 2x^2 + 3 \\
 y &= x + 2
\end{align*} \]

Step 1 Graph both equations on the same coordinate plane.

Step 2 Identify the point(s) of intersection, if any.

There are no points of intersection, so there is no solution to the system of equations.

Find the number of solutions for each system.

a. \[\begin{align*}
 y &= x - 4 \\
 y &= 2x^2 + x
\end{align*} \]

b. \[\begin{align*}
 y &= x^2 - 6x + 10 \\
 y &= 1
\end{align*} \]

Solving System Using Algebraic Methods

In Lesson 7-3, you solved linear systems using elimination. The same technique can be applied to systems of linear and quadratic equations.

EXAMPLE Using Elimination

Solve the following system of equations:

\[\begin{align*}
 y &= x^2 - 11x - 36 \\
 y &= -12x + 36
\end{align*} \]

Step 1 Eliminate y.

\[\begin{align*}
 y &= x^2 - 11x - 36 \\
 - (y) &= -12x + 36 \\
 0 &= x^2 + x - 72
\end{align*} \]

Subtract the two equations.

Step 2 Factor and solve for x

\[\begin{align*}
 0 &= x^2 + x - 72 \\
 0 &= (x + 9)(x - 8) \\
 x + 9 &= 0 \quad \text{or} \quad x - 8 = 0 \\
 x &= -9 \quad \text{or} \quad x = 8
\end{align*} \]

Reduce the zero-product property.

Step 3 Find the corresponding y values. Use either equation.

\[\begin{align*}
 y &= x^2 - 11x - 36 \\
 y &= (x + 9)^2 - 11(x - 9) - 36 \\
 y &= x^2 - 11x - 36 \\
 y &= (8) - 11(8) - 36 \\
 y &= 81 + 99 - 36 \\
 y &= 144 \\
 y &= -60
\end{align*} \]

The solutions are \((-9, 144)\) and \((8, -60)\).

Quick Check

Solve the system using elimination.

\[\begin{align*}
 y &= x^2 + 4x - 1 \\
 y &= 3x + 1
\end{align*} \]
4 Using Substitution

Solve the following system of equations: \(y = x^2 - 6x + 9 \) and \(y + x = 5 \).

Step 1 Solve \(y + x = 5 \) for \(y \).

\[
y + x - x = 5 - x
y = 5 - x
\]

Step 2 Write a single equation containing only one variable.

\[
y = x^2 - 6x + 9
5 - x = x^2 - 6x + 9
5 - x - (5 - x) = x^2 - 6x + 9 - (5 - x)
0 = x^2 - 5x + 4
\]

Step 3 Factor and solve for \(x \).

\[
0 = (x - 4)(x - 1)
\]

\[
x - 4 = 0 \quad \text{or} \quad x - 1 = 0
\]

\[
x = 4 \quad \text{or} \quad x = 1
\]

Step 4 Find the corresponding \(y \)-values. Use either equation.

\[
y = -x^2 + 4x + 1
y = -x^2 + 4x + 1
\]

\[
= -(4^2) + 4(4) + 1
= -(1^2) + 4(1) + 1
\]

\[
= 1
= 4
\]

The solutions of the system are (4, 1) and (1, 4).

Quick Check

4 Solve the system using substitution. \(y - 30 = 12x \)

\[
y = x^2 + 11x - 12
\]

In Lesson 10-7, you used the discriminant to find the number of solutions of a quadratic equation. With systems of linear and quadratic equations you can also use the discriminant once you eliminate a variable.

5 Using the Discriminant to Count Solutions

At how many points do the graphs of \(y = 2 \) and \(y = x^2 + 4x + 7 \) intersect?

Step 1 Eliminate \(y \) from the system. Write the resulting equation in standard form.

\[
y = x^2 + 4x + 7
-y = -\frac{x^2}{2} - 4
0 = x^2 + 4x + 5
\]

Step 2 Determine whether the discriminant, \(b^2 - 4ac \), is positive, 0, or negative.

\[
b^2 - 4ac = 4^2 - 4(1)(5)
= 16 - 20
= -4
\]

Since the discriminant is \(-4\), there are no solutions. The graphs do not intersect.

Quick Check

5 At how many points do the graphs of \(y = x^2 - 2 \) and \(y = x + 5 \) intersect?
Lesson NY-6
Systems of Linear and Quadratic Equations

6 EXAMPLE Solve Using a Graphing Calculator

Solve the system of equations \(y = -x^2 + 4x + 1 \) and \(y = -x + 5 \) using a graphing calculator.

Step 1 Enter \(y = -x^2 + 4x + 1 \) and \(y = -x + 5 \) into Y1 and Y2. Press GRAPH to display the system.

Step 2 Use the \(\text{CALC} \) feature. Select 5: Intersect.

Step 3 Move the cursor close to Y1 and Y2. Press \(\text{ENTER} \) three times to find the point of intersection.

Step 4 Repeat Steps 2 and 3 to find the second intersection point.

The solutions of the system are (1, 4) and (4, 1).

Quick Check

Solve the system using a graphing calculator.
\[
\begin{align*}
2x - 2 &= y \\
-x &= y
\end{align*}
\]

EXERCISES
Practice and Problem Solving

For more exercises, see Extra Skill and Word Problem Practice.

Practice by Example

Examples 1 and 2 (pages NY 752 and NY 753)

Solve each system by graphing. Find the number of solutions for each system.

1. \(y = x^2 + 1 \) \\
 \(y = x + 1 \)

2. \(y = x^2 + 4 \) \\
 \(y = 4x \)

3. \(y = x^2 - 5x - 4 \) \\
 \(y = -x \)

4. \(y = x^2 + 2x + 4 \) \\
 \(y = x + 1 \)

5. \(y = x^2 + 2x + 5 \) \\
 \(y = -2x + 1 \)

6. \(y = 3x + 4 \) \\
 \(y = -x^2 \)

Solve each system using elimination.

7. \(y = -x + 3 \) \\
 \(y = x^2 + 1 \)

8. \(y = x^2 \) \\
 \(y = x + 2 \)

9. \(y = -x - 7 \) \\
 \(y = x^2 - 4x - 5 \)

10. \(y = x^2 + 11 \) \\
 \(y = -12x \)

11. \(y = 5x - 20 \) \\
 \(y = x^2 - 5x + 5 \)

12. \(y = x^2 - x - 90 \) \\
 \(y = x + 30 \)

Solve each system using substitution.

13. \(y = x^2 - 2x - 6 \) \\
 \(y = 4x + 10 \)

14. \(y = 3x - 20 \) \\
 \(y = -x^2 + 34 \)

15. \(y = x^2 + 7x + 100 \) \\
 \(y + 10x = 30 \)

16. \(-x^2 - x + 19 = y \) \\
 \(x = y + 80 \)

17. \(3x - y = -2 \) \\
 \(2x^2 = y \)

18. \(y = 3x^2 + 21x - 5 \) \\
 \(-10x + y = -1 \)

Example 3 (page NY 753)

Example 4 (page NY 754)
Apply Your Skills

Example 5
(page NY 754)

Use the discriminant to find the number of solutions for each system.

19. \(y = x^2 - 5x - 8 \) \(y = x \)
20. \(y = -x^2 - 3 \) \(y = 9 + 2x \)
21. \(y = -3x - 6 \) \(y = 2x^2 - 7x \)
22. \(y = 25x^2 - 9x + 2 \) \(y = 2 + 11x \)
23. \(y = -x^2 - 4x + 9 \) \(y = 5x - 7 \)
24. \(4x^2 + 20x + 29 = y \) \(8x + y + 20 = 0 \)

Example 6
(page NY 755)

Solve each system using a graphing calculator.

25. \(y = x^2 - 2x - 2 \) \(y = -2x + 2 \)
26. \(y = -x^2 + 2 \) \(y = 4 - 0.5x \)
27. \(y = x - 5 \) \(y = x^2 - 6x + 5 \)
28. \(y = -0.5x^2 - 2x + 1 \) \(y = 3 - x \)
29. \(y = 2x^2 - 24x + 76 \) \(y = 7 + 11 \)
30. \(-x^2 - 8x - 15 = y \) \(-x + y = 3 \)

Apply Your Skills

31. Critical Thinking The graph at the right shows a quadratic function and the linear function \(y = d \).

a. If the linear function were changed to \(y = d + 3 \), how many solutions would the system have?

b. If the linear function were changed to \(y = d - 5 \), how many solutions would the system have?

Solve each system using either elimination or substitution.

32. \(y = 2x^2 + 13x \) \(y = -9 - 6x \)
33. \(y = -8x \) \(y = 1 + 16x^2 \)
34. \(y = x^2 + 9x - 91 \) \(y = \frac{x}{3} \)
35. \(y + 20x = 39 \) \(15 + 4x^2 + 9x = y \)
36. \(y = x^2 - 12x - 20 \) \(y = 25(4 - x) \)
37. \(5x^2 + 14x + 1 = y \) \(-12 + y + 40x = 0 \)

38. Graphing Calculator The screen at the right shows the \(y \)- and \(x \)-values for the system \(y = x^2 - 6x + 8 \) and \(y = x - 1 \). Use the table to find the solutions of the system.

39. Writing Explain why a system of linear and quadratic equations cannot have an infinite number of solutions.

Use substitution and the quadratic formula to find the solutions of each system.

Round your answers to the nearest hundredth.

40. \(y = 2x^2 + 4x - 1 \) \(-5x + y = 5 \)
41. \(2y + 4 = x \) \(y + x^2 = 4 \)
42. \(3x = y - 7 \) \(y = 6x^2 - 4x + 1 \)

43. The graph at the right shows the system \(y = x^2 - 5 \) and \(y = x \). Find the values of \(x \) such that the \(y \)-values on the parabola are 10 units greater than the corresponding \(y \)-values on the line. Round your answers to the nearest hundredths.

44. Critical Thinking Solve the system \(y = x^2 + x + 25 \) and \(y = x \) using substitution. How can you tell that the system has no solutions without using graphing, the discriminant, or the quadratic formula?
Challenge

45. Geometry The figures below show rectangles that are centered on the y-axis with bases on the x-axis and upper vertices defined by the function \(y = -0.3x^2 + 4 \). Find the area of each rectangle. Round to the nearest hundredth.

- **a.**
 - \(\begin{align*}
 y &= 6 \\
 x &= 2 \\
 \end{align*} \)

- **b.**
 - \(\begin{align*}
 y &= 4 \\
 x &= 2 \\
 \end{align*} \)

- **c.** Find the x- and y-coordinates of the vertices of the square constructed in the same manner.

- **d.** Find the area of the square. Round to the nearest hundredth.

Test Prep

Multiple Choice

46. Which coordinate pair is a solution to the following system?

\[
\begin{align*}
 y &= x^2 + 2x - 2 \\
 y &= x + 10
\end{align*}
\]

- A. \((4, 14)\)
- B. \((3, 13)\)
- C. \((2, 12)\)
- D. \((-3, 7)\)

47. The graph at the right shows the system \(y = x + 4 \) and \(y = -x^2 + x \). How many solutions does the system have?

- F. one solution
- G. two solutions
- H. no solutions
- J. cannot be determined

Short Response

48. Use the discriminant to determine the number of solutions of the system.

\[
\begin{align*}
 y &= 49x^2 - 2x + 34 \\
 y &= 30 = 100x
\end{align*}
\]

49. Solve the system using substitution and factoring. Show your work.

\[
\begin{align*}
 x^2 + 3x - 23 &= y \\
 \frac{y}{5} - 5 &= x
\end{align*}
\]

Mixed Review

Lesson NY-5

Tell whether each correlation is a causal relationship. Justify your answer.

50. Hours of computer use and television viewing have a negative correlation. Is this a causation?

51. The number of ice cream trucks in a town on a given day and the high temperature have a positive correlation. Is this a causation?

Lesson NY-4

Find each union or intersection. Let \(A = \{1, 3, 6\} \), \(B = \{2, 6, 8\} \), \(C = \{x \mid x \text{ is an even number less than 6}\} \), and \(D = \{x \mid x \text{ is a multiple of 3 less than 12}\} \).

52. \(A \cup B \)
53. \(A \cap B \)
54. \(A \cap D \)
55. \(C \cap D \)
56. \(B \cap C \)
57. \(D \cup C \)
58. \(D \cup A \)
59. \(A \cap C \)