RELATIONS & FUNCTIONS Worksheet

1.

Using the vertical line test, determine if the graph above shows a relation, a function, both a relation and a function, or neither a relation nor a function.

- A. neither a relation nor a function
- **B.** relation only
- C. both a relation and a function
- **D.** function only

2. Which of these graphs represents a function?

- **O** A. Z
- **O B.** X
- C. W
- **O D.** Y

A. W
B. Y
C. Z
D. X

3. Which of these t-tables represents a function?

x	<i>f(x)</i>	x	f(x)	x	<i>f(x)</i>	_	x	f(x)
5	-1	2	-2	-2	0		-2	0
3	0	0	0	0	2		0	2
5	1	2	2	2	0		2	0
7	2	8	4	1	1.7		0	-2
١	N.)	ζ.	١	<i>(</i> .		2	Ζ.

4. Which of these graphs represents a function?

○ A. Z

- **B.** W
- C. X
- **O D.** Y

5. Which of the following relations describes a function?

A. { (0, 0), (0, 2), (2, 0), (2, 2) }
B. { (2, 2), (2, 3), (3, 2), (3, 3) }
C. { (2, -1), (2, 1), (3, -1), (3, 1) }
D. { (-2, -3), (-3, -2), (2, 3), (3, 2) }

6. Do the ordered pairs below represent a relation, a function, both a relation and a function, or neither a relation nor a function?

- A. neither a relation nor a function
- **B.** both a relation and a function
- O C. relation only
- **D.** function only

7.

Determine whether this picture is an example of a function, relation, function and relation, or neither relation nor function.

- A. function and relation
- **B.** function only
- C. relation only
- **D.** neither function nor relation

9. Which of the following relations describes a function?

A. { (2, 2), (3, 2), (4, 2), (5, 2) }
B. { (-2, 0), (0, -2), (0, 2), (2, 0) }
C. { (0, 0), (2, -2), (2, 2), (3, 3) }
D. { (2, 3), (2, 4), (2, 5), (2, 6) }

10. Which of these graphs represents a function?

A. YB. XC. Z

O D. W

12. Which of the following relations describes a function?

A. { (0, 0), (1, -1), (1, 1), (2, 2) }
B. { (-2, 2), (-1, -1), (-1, 1), (0, 0) }
C. { (-1, 0), (0, 1), (1, 0), (0, -1) }
D. { (-2, 2), (-1, 1), (1, 1), (2, 2) }

13. Which of these mappings is a function?

14. Which of these graphs represents a function?

B. W**C.** Y**D.** Z

15. Which of these mappings is a function?

16. Which of the following represents a relation and not a function?

17. Think about the vertical line test and answer the following question. Would a vertical line be a relation, a function, both a relation and a function, or neither a relation nor a function?

- **A.** function only
- O **B.** both a relation and a function
- C. neither a relation nor a function
- O **D.** relation only

18. Which of the following graphs is not a function?

- O C. Z
- **O D.** X

19. Which of these t-tables represents a function?

	x	f(x)	x	f(x)	x	f(x)	x	f(x)
	-2	0	-4	2	 -1	-1	-4	2
	0	1	-1	-1	0	0	-2	-1
	2	0	0	0	1	1	0	0
	0	-1	-1	1	2	8	-2	1
	V	V .)	(.	٢	ŕ .	2	Ζ.
O A. X								
○ B. Z								
O C. Y								
🔿 D. W								

20. Which of the following relations describes a function?

 \bigcirc A. { (-3, 9), (-2, 4), (2, 4), (3, 9) } **O B.** { (2, -2), (0, 0), (2, 2), (3, 3) } \bigcirc C. { (-2, 0), (0, 2), (2, 0), (0, -2) } \bigcirc **D.** { (9, -3), (4, -2), (4, 2), (9, 3) }

21. Which of the following graphs is not a function?

- \bigcirc **A.** W, X, Y and Z
- **O B.** Z
- O C. Y and Z
- **D.** X and Y

Determine whether this picture is an example of a function, relation, function and relation, or neither relation nor function.

- A. neither function nor relation
- **B.** relation only
- **C.** function only
- O **D.** function and relation

24. Do the ordered pairs below represent a relation, a function, both a relation and a function, or neither a relation nor a function?

(-4,-3), (1,-8), (-4,-14), (9,-16)

- A. function only
- **B.** both a relation and a function
- O C. neither a relation nor a function
- O **D.** relation only

25. Which of these t-tables represents a function?

x	<i>f(x)</i>	x	f(x)		x	<i>f(x)</i>		x	<i>f(x)</i>
0	-1	-1	0		-1	3	-	3	-1
-1	0	0	1		0	1		1	0
0	1	1	0		1	3		3	1
3	2	0	-1		2	5		5	2
	w.		х.		Υ.			Ζ.	

○ C. X ○ D. W

○ A. Y○ B. Z

Answers

1. B 2. D 3. B 4. D 5. D 6. B 7. C 8. C 9. A 10. A 11. A 12. D 13. B 14. D 15. D 16. A 17. D 18. C 19. C 20. A 21. B 22. D 23. B

24. D 25. A

Explanations

1. A relation is a set of one or more ordered pairs.

A *function* is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical Line Test: Given the graph of a relation, if a vertical line can be drawn that crosses the graph in more than one place, then the relation is not a function.

The graph does not pass the vertical line test; therefore, the graph is not a function, and it is a **relation only**.

2. Use the vertical line test to determine if the graphs represent a function.

The only graph given that passes the vertical line test is **Y**.

3. A function maps each domain element to only one range element.

The t-table **Y** is the only table that does not show a domain element paired with two or more range elements.

4. Use the vertical line test to determine if the graphs represent a function.

The only graph given that passes the vertical line test is **Y**.

5. A function is a set of ordered pairs such that for each domain element there is only one range element.

The set of ordered pairs { (-2, -3), (-3, -2), (2, 3), (3, 2) } is the only set that does not pair a domain element with two or more range elements.

6. A *relation* is a set of one or more ordered pairs.

A *function* is a relation in which each element of the domain is paired with EXACTLY one element of the range.

In this case, there is one *y*-coordinate for every *x*-coordinate.

The vertical line test can be used to determine this.

Therefore, it is both a relation and a function.

7. A *relation* is a set of one or more ordered pairs.

A *function* is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical-Line Test: Given the graph of a relation, if a vertical line can be drawn that does not cross the graph in more than one place, it is a function.

Any vertical line drawn where x > -4 will cross the graph in more than one place.

Therefore, the graph is not a function, it is a **relation only**.

8. For a relation to be a function, each input value can only correspond to one output value. The relation diagram where each input value has exactly one arrow drawn to an output value will represent a function.

Therefore, diagram W represents a function.

9. A function is a set of ordered pairs such that for each domain element there is only one range element.

The set of ordered pairs { (2, 2), (3, 2), (4, 2), (5, 2) } is the only set that does not pair a domain element with two or more range elements.

10. Use the vertical line test to determine if the graphs represent a function.

The only graph given that passes the vertical line test is **Y**.

11. For a relation to be a function, each input value can only correspond to one output value. The relation diagram where each input value has exactly one arrow drawn to an output value will represent a function.

Therefore, diagram W represents a function.

12. A function is a set of ordered pairs such that for each domain element there is only one range element.

The set of ordered pairs { (-2, 2), (-1, 1), (1, 1), (2, 2) } is the only set that does not pair a domain element with two or more range elements.

13. A function maps each domain element to only one range element.

The only mapping that does not map a domain element to two or more range elements is **Z**.

14. Use the vertical line test to determine if the graphs represent a function.

The only graph given that passes the vertical line test is **Z**.

15. A function maps each domain element to only one range element.

The only mapping that does not map a domain element to two or more range elements is **Z**.

16. A *relation* is a set of one or more ordered pairs.

A *function* is a relation in which each element of the domain is paired with EXACTLY one element of the range.

In the table below, there are two *y*-coordinates for the *x*-coordinate -10. Therefore, it is a relation only and not a function.

x	- 10	-6	- 10	1
у	34	32	40	34

17. A relation is a set of one or more ordered pairs.

A *function* is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical-Line Test: Given the graph of a relation, if a vertical line can be drawn that does not cross any of the graphs in more than one place, it is a function.

If the relation being tested is a vertical line, then any x in the domain of the relation (which there would be only one) will correspond with every y of the range (an infinite number of points).

So, a vertical line can be drawn that crosses the graph in more than one place (the vertical line itself).

Therefore, a vertical line is not a function, and it is a **relation only**.

18. A *relation* is a set of one or more ordered pairs.

A *function* is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical Line Test: Given the graph of a relation, if a vertical line can be drawn that crosses the graph in more than one place, then the relation is not a function.

Therefore, graph \mathbf{Z} is not a function.

19. A function maps each domain element to only one range element.

The t-table **Y** is the only table that does not show a domain element paired with two or more range elements.

20. A function is a set of ordered pairs such that for each domain element there is only one range element.

The set of ordered pairs { (-3, 9), (-2, 4), (2, 4), (3, 9) } is the only set that does not pair a domain element with two or more range elements.

21. A relation is a set of one or more ordered pairs.

A *function* is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical-Line Test: Given the graph of a relation, if a vertical line can be drawn that does not cross any of the graphs in more than one place, it is a function.

Therefore, \mathbf{Z} is not a function.

22. For a relation to be a function, each input value can only correspond to one output value. The relation diagram where each input value has exactly one arrow drawn to an output value will represent a function.

Therefore, diagram X represents a function.

23. A *relation* is a set of one or more ordered pairs.

A *function* is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical Line Test: Given the graph of a relation, if a vertical line can be drawn that crosses the graph in more than one place, then the relation is not a function.

Since the graph does not pass the vertical line test, it is not a function, it is a **relation only**.

24. A relation is a set of one or more ordered pairs.

A *function* is a relation in which each element of the domain is paired with EXACTLY one element of the range.

There are two y-coordinates (range element) when x = -4.

Therefore, it is a **relation only**.

25. A function maps each domain element to only one range element.

The t-table Y is the only table that does not show a domain element paired with two or more range elements.