RELATIONS \& FUNCTIONS Worksheet

1.

Using the vertical line test, determine if the graph above shows a relation, a function, both a relation and a function, or neither a relation nor a function.A. neither a relation nor a functionB. relation onlyC. both a relation and a functionD. function only
2. Which of these graphs represents a function?

A. Z
B. X
C. W
D. Y
3. Which of these t-tables represents a function?

x	$f(x)$	x	$f(x)$	χ	$f(x)$	x	$f(x)$
5	-1	2	-2	-2	0	-2	0
3	0	0	0	0	2	0	2
5	1	2	2	2	0	2	0
7	2	8	4	1	1.7	0	-2
W.		X.		Y.		Z.	

A. W
B. Y
C. Z
D. X
4. Which of these graphs represents a function?

A. Z
B. W
C. X
D. Y
5. Which of the following relations describes a function?A. $\{(0,0),(0,2),(2,0),(2,2)\}$
B. $\{(2,2),(2,3),(3,2),(3,3)\}$
C. $\{(2,-1),(2,1),(3,-1),(3,1)\}$D. $\{(-2,-3),(-3,-2),(2,3),(3,2)\}$
6. Do the ordered pairs below represent a relation, a function, both a relation and a function, or neither a relation nor a function?

$$
(-2,-1),(1,-4),(7,-10),(8,-11)
$$

A. neither a relation nor a functionB. both a relation and a function
C. relation onlyD. function only
7.

Determine whether this picture is an example of a function, relation, function and relation, or neither relation nor function.
A. function and relationB. function only
C. relation onlyD. neither function nor relation
8. Which relation diagram represents a function?
A. ZB. XC. WD. Y
9. Which of the following relations describes a function?A. $\{(2,2),(3,2),(4,2),(5,2)\}$
B. $\{(-2,0),(0,-2),(0,2),(2,0)\}$
C. $\{(0,0),(2,-2),(2,2),(3,3)\}$D. $\{(2,3),(2,4),(2,5),(2,6)\}$
10. Which of these graphs represents a function?

A. Y
B. X
C. Z
D. W
11. Which relation diagram represents a function?
A. WB. XC. YD. Z
12. Which of the following relations describes a function?A. $\{(0,0),(1,-1),(1,1),(2,2)\}$
B. $\{(-2,2),(-1,-1),(-1,1),(0,0)\}$C. $\{(-1,0),(0,1),(1,0),(0,-1)\}$
D. $\{(-2,2),(-1,1),(1,1),(2,2)\}$
13. Which of these mappings is a function?

W.

X.

Y.

Z.
\bigcirc
A. WB. ZC. XD. Y
14. Which of these graphs represents a function?

A. XB. WC. YD. Z
15. Which of these mappings is a function?

W.

X.

Y.

Z.A. WB. Y
C. XD. Z
16. Which of the following represents a relation and not a function?

O

A. | x | - | -6 | - | 1 |
| :---: | :---: | :---: | :---: | :---: |
| y | 34 | 32 | 40 | 34 |B.

\boldsymbol{x}	-	-6	-2	1
\boldsymbol{y}	34	32	40	34

x	-	-6	6	12						
\boldsymbol{y}	34	32	40	34	D.	\boldsymbol{x}	6	-6	12	-
:---:	:---:	:---:	:---:	:---:						
\boldsymbol{y}	34	32	40	34						

17. Think about the vertical line test and answer the following question. Would a vertical line be a relation, a function, both a relation and a function, or neither a relation nor a function?
A. function onlyB. both a relation and a function

○
C. neither a relation nor a function
D. relation only
18. Which of the following graphs is not a function?

Z.
A. YB. WC. Z
D. X
19. Which of these t-tables represents a function?

x	$f(x)$		x	$f(x)$		x	$f(x)$		x
	-2	0		-4	2		-1	-1	

A. X
B. Z
C. YD. W
20. Which of the following relations describes a function?A. $\{(-3,9),(-2,4),(2,4),(3,9)\}$B. $\{(2,-2),(0,0),(2,2),(3,3)\}$

○. $\{(-2,0),(0,2),(2,0),(0,-2)\}$
D. $\{(9,-3),(4,-2),(4,2),(9,3)\}$
21. Which of the following graphs is not a function?
A. W, X, Y and ZB. ZC. Y and ZD. X and Y
22. Which relation diagram represents a function?
A. YB. WC. ZD. X
23.

Determine whether this picture is an example of a function, relation, function and relation, or neither relation nor function.
A. neither function nor relationB. relation only
C. function only
D. function and relation
24. Do the ordered pairs below represent a relation, a function, both a relation and a function, or neither a relation nor a function?
$(-4,-3),(1,-8),(-4,-14),(9,-16)$A. function onlyB. both a relation and a functionC. neither a relation nor a function
D. relation only
25. Which of these t-tables represents a function?

x	$f(x)$	x	$f(x)$	x	$f(x)$	x	$f(x)$
0	-1	-1	0	-1	3	3	-1
-1	0	0	1	0	1	1	0
0	1	1	0	1	3	3	1
3	2	0	-1	2	5	5	2
w.		X.		Y.		z.	

A. Y
B. Z
C. X
D. W

Answers

1. B
2. D
3. B
4. D
5. D
6. B
7. C
8. C
9. A
10. A
11. A
12. D
13. B
14. D
15. D
16. A
17. D
18. C
19. C
20. A
21. B
22. D
23. B
24. D
25. A

Explanations

1. A relation is a set of one or more ordered pairs.

A function is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical Line Test: Given the graph of a relation, if a vertical line can be drawn that crosses the graph in more than one place, then the relation is not a function.

The graph does not pass the vertical line test; therefore, the graph is not a function, and it is a relation only.
2. Use the vertical line test to determine if the graphs represent a function.

The only graph given that passes the vertical line test is \mathbf{Y}.
3. A function maps each domain element to only one range element.

The t -table \mathbf{Y} is the only table that does not show a domain element paired with two or more range elements.
4. Use the vertical line test to determine if the graphs represent a function.

The only graph given that passes the vertical line test is \mathbf{Y}.
5. A function is a set of ordered pairs such that for each domain element there is only one range element.

The set of ordered pairs $\{(-2,-3),(-3,-2),(2,3),(\mathbf{3}, \mathbf{2})\}$ is the only set that does not pair a domain element with two or more range elements.
6. A relation is a set of one or more ordered pairs.

A function is a relation in which each element of the domain is paired with EXACTLY one element of the range.

In this case, there is one y-coordinate for every x-coordinate.
The vertical line test can be used to determine this.
Therefore, it is both a relation and a function.
7. A relation is a set of one or more ordered pairs.

A function is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical-Line Test: Given the graph of a relation, if a vertical line can be drawn that does not cross the graph in more than one place, it is a function.

Any vertical line drawn where $x>-4$ will cross the graph in more than one place.
Therefore, the graph is not a function, it is a relation only.
8. For a relation to be a function, each input value can only correspond to one output value. The relation diagram where each input value has exactly one arrow drawn to an output value will represent a function.

Therefore, diagram \mathbf{W} represents a function.
9. A function is a set of ordered pairs such that for each domain element there is only one range element.

The set of ordered pairs $\{(\mathbf{2}, \mathbf{2}),(\mathbf{3}, \mathbf{2}),(\mathbf{4}, \mathbf{2}),(\mathbf{5}, \mathbf{2})\}$ is the only set that does not pair a domain element with two or more range elements.
10. Use the vertical line test to determine if the graphs represent a function.

The only graph given that passes the vertical line test is \mathbf{Y}.
11. For a relation to be a function, each input value can only correspond to one output value. The relation diagram where each input value has exactly one arrow drawn to an output value will represent a function.

Therefore, diagram \mathbf{W} represents a function.
12. A function is a set of ordered pairs such that for each domain element there is only one range element.

The set of ordered pairs $\{(\mathbf{- 2}, \mathbf{2}),(\mathbf{- 1}, \mathbf{1}),(\mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{2})\}$ is the only set that does not pair a domain element with two or more range elements.
13. A function maps each domain element to only one range element.

The only mapping that does not map a domain element to two or more range elements is \mathbf{Z}.
14. Use the vertical line test to determine if the graphs represent a function.

The only graph given that passes the vertical line test is \mathbf{Z}.
15. A function maps each domain element to only one range element.

The only mapping that does not map a domain element to two or more range elements is \mathbf{Z}.
16. A relation is a set of one or more ordered pairs.

A function is a relation in which each element of the domain is paired with EXACTLY one element of the range.

In the table below, there are two y-coordinates for the x-coordinate -10 . Therefore, it is a relation only and not a function.

\boldsymbol{x}	-	-6	-	10
\boldsymbol{y}	34	32	10	40

17. A relation is a set of one or more ordered pairs.

A function is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical-Line Test: Given the graph of a relation, if a vertical line can be drawn that does not cross any of the graphs in more than one place, it is a function.

If the relation being tested is a vertical line, then any x in the domain of the relation (which there would be only one) will correspond with every y of the range (an infinite number of points).

So, a vertical line can be drawn that crosses the graph in more than one place (the vertical line itself).
Therefore, a vertical line is not a function, and it is a relation only.
18. A relation is a set of one or more ordered pairs.

A function is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical Line Test: Given the graph of a relation, if a vertical line can be drawn that crosses the graph in more than one place, then the relation is not a function.

Therefore, graph \mathbf{Z} is not a function.
19. A function maps each domain element to only one range element.

The t-table \mathbf{Y} is the only table that does not show a domain element paired with two or more range elements.
20. A function is a set of ordered pairs such that for each domain element there is only one range element.

The set of ordered pairs $\{(\mathbf{- 3}, \mathbf{9}),(\mathbf{- 2}, \mathbf{4}),(\mathbf{2}, \mathbf{4}),(\mathbf{3}, \mathbf{9})\}$ is the only set that does not pair a domain element with two or more range elements.
21. A relation is a set of one or more ordered pairs.

A function is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical-Line Test: Given the graph of a relation, if a vertical line can be drawn that does not cross any of the graphs in more than one place, it is a function.

Therefore, \mathbf{Z} is not a function.
22. For a relation to be a function, each input value can only correspond to one output value. The relation diagram where each input value has exactly one arrow drawn to an output value will represent a function.

Therefore, diagram \mathbf{X} represents a function.
23. A relation is a set of one or more ordered pairs.

A function is a relation in which each element of the domain is paired with EXACTLY one element of the range.

The Vertical Line Test: Given the graph of a relation, if a vertical line can be drawn that crosses the graph in more than one place, then the relation is not a function.

Since the graph does not pass the vertical line test, it is not a function, it is a relation only.
24. A relation is a set of one or more ordered pairs.

A function is a relation in which each element of the domain is paired with EXACTLY one element of the range.

There are two y-coordinates (range element) when $x=-4$.
Therefore, it is a relation only.
25. A function maps each domain element to only one range element.

The t-table \mathbf{Y} is the only table that does not show a domain element paired with two or more range elements.

